خطة البحث

 

الفصل الأول : تعريف الذرة والطاقة النووية .

الفصل الثاني : قصة الإنسان مع الذرة .

الفصل الثالث : كيف أمكن الحصول على الطاقة النووية من الذرة  .

الفصل الرابع : إستخدام الطاقة النووية مستقبلاً .

الفصل الخامس : الاستخدامات السلمية للذرة  .

المبحث الأول : في المجالات الطبية .

المبحث الثاني : في مجالات التغذية .

المبحث الثالث : في المجالات الصناعية  .

المبحث الرابع : في المجالات العلمية .

 

 

 

الفصل الأول

 

تعريف  الطاقة

 

 الطاقة هي القدرة التي يمكن الإفادة منها في أداء عمل ما .

وللطاقة صور شتى فهناك الطاقة الحرارية والطاقة الكهربية والطاقة الضوئية والطاقة الحركية والطاقة الكامنة وغير ذلك .

ولكل طاقة مصدرها وقد يكون الحصول على هذا المصدر ميسوراً إلا أن نفقاته قد تكون طائلة . ومن هذه الطاقات ما يمكن تحويله إلى طاقة أخرى فمثلاً تتحول الطاقة الحرارية من الفحم أو البترول إلى طاقة ميكانيكية أو حركية أو كهربية تسير الآلات والقاطرات .

وكذلك الطاقة الكهربية أمكن تحويلها إلى طاقة ميكانيكية تدير المصانع والآلات ومن أبسطها آلات عصير الفواكه ونشر الأخشاب .

مصادر الطاقة :

 

 

 

 

قد كان المعروف لنا قديماً أن مصادر الطاقة الرئيسية هي :

1- الهواء : الذي أدار الإنسان به الطواحين وسير به المراكب الشراعية .

2- الماء : الذي استخدم الإنسان مساقطه في إدارة الآلات والسواقي كما في منطقة الفيوم

3- الخش والفحم : اللذين استخدمها الإنسان وقوداً واستغلها في توليد البخار وتسيير القطارات .

4- ثم كان البترول ومشتقاته من :السولار والبنزين والديزل فاستخدم الإنسان كل نوع من هذه الأنواع في تسيير ما يصلح له من سيارات وآلات وطائرات .

5- ثم كانت الكهرباء : وقد أقبل الناس على استخدامها لما لها من المزايا العديدة في عصر يحرص الناس فيه على توفير الوقت والجهد والمال . 

6- الشمس : مصدر هام من مصادر الطاقة الحرارية والضوئية يحاول الإنسان تركيز ما تبعثه من حرارة لينتفع به في عمليات التجفيف والتبخير والتدفئة وغيرها.

7- واليوم أضيفت الطاقة الذرية إلى تلك المصادر وأصبح الأمل في استخدامها حديث الساعة وأخذ الناس يعلقون عليها أهمية كبرى ولا سيما في ميادين الصناعة والزراعة والطب والعلوم ووسائل الانتقال وغيرها من ميادين السلام والتعمير . ومما يزيد أهمية هذا المصدر أن مصادر الفحم والبترول في العالم مجدودة وفي تناقص مستمر ومن المؤكد أنه خلال السنين القادمة سنضب معينها في الوقت الذي تشتد فيه حاجة افنسان إلى مصادر تفي بمطالبه وضروريات حياته . فإذا علمنا أن القليل من الوقود الذري يولد قدراً ضخماً من الطاقة لا يقارن بما يتولد من المصادر الأخرى بات من المنتظر أن تحتل الذرة في المستقبل القريب المركز الأول بين مصادر الطاقة .

 

 

الفصل الثاني

 

 

كيف أمكن الحصول على الطاقة من الذرة

أن الذرة مصدر للطاقة وليست ذرة كل عنصر مهيأة لتوليد طاقة فبعض الذرات يمكن أن تتولد منه طاقة وبعض الذرات خاملة أي لا تستجيب لتوليد طاقة باستخدام الوسائل الحالية والذرات التي تمدنا بالطاقة يطلق عليها الوقود الذري مثل :

ذرات اليورانيوم 235 والبلوتونيوم 239 والثوريوم 233 ومن هنا جاءت شهرة اليورانيوم . وتحتوي كل ذرة من ذرات اليورانيوم على البروتونات الموجبة والنيوترونات المتعادلة . فإذا فتتنا ذرة اليورانيوم بإقحام نيوترون على نواتها حدثت النتائج الآتية .

أولاً : تفجير النواة Fission .

ثانياً : تحويل جزء من الذرة إلى طاقة .

ثالثاً : إطلاق نيوترونات جديدة تقتحم بدورها ما يجاورها من نويات اليورانيوم فتحدث بها تفجيراً مماثلاً للأول . وهكذا يتسلسل  التفجير ويتتابع ويستمر انطلاق الطاقة حتى ينتهي الوقود الذري . وبديهي أن كل تفجير أو انشطار في أي مرحلة من المراحل السابقة تصحبه طاقة نووية عظيمة . وإنه مما يثير الدهشة أن هذا التفاعل المسلسل الذي وصفناه على الصورة السابقة يتم في كسر ضئيل من الثانية . ولما كان هذا التفجير الخطير يتم بمثل هذه السرعة الهائلة وتنبعث على أثره اشعاعات خطيرة بالنسبة للأحياء فقد حرص العلماء على الافادة من الطاقة المنطلقة بطريقة أخرى ليحققوا من ذلك غرضين :

الأول : الانتفاع بهذه الطاقة كاملة على مدى الزمن الذي نريده وبالمعدل الذي نختاره . الثاني : السيطرة على توليد الطاقة عند اللزوم وبمحض الإرادة . وقد تم هذا فعلاً للعلماء بعد أبحاث مضنية وجهود جبارة إذ نجحوا في توليد الطاقة في حدود الغرضين السابقين فيما يسمونه بالأفران الذرية .

ولما كان من الضروري الوقاية من الإشعاعات المنبعثة من التفجير حيث يبلغ قسم كبير منها في قوة نفاذه جداً يستطيع اختراق سُمْك كبير من ا لحواجز فإن الفرن الذري يحاط بطبقة سميكة من نوع خاص من الخرسانة المسلحة الثقيلة لحماية المشتغلين في الإفران من خطر الإشعاع . وللتحكم في معدل التوليد للطاقة يجب علينا أن نكبح جماح التفاعل الانفجاري اللحظي الذي يعد هاماً في الحروب بوضع مواد أو عناصر خاصة كالكادميوم في الأفران تعترض سيل النيوترونات التي تفجر ذرات اليورانيوم فتمتص هذه المواد النيوترونات التي تفجر ذرات اليورانيوم فتمتص هذهالموادالنيوترونات وتعمل على حبسها عن المضي في طريقها إلا بقدر محدود تتولد معه الطاقة المطلوبة تدريجاً ويمتنع الانفجار اللحظي السريع . ومما يغري الناس باستخدام الطاقة الذرية ما تولده كيمة الوقودالذري الضئيلة من طاقة عظيمة تفوق ما يتولد من مثيلاتها من الفحم والبترول ملايين المرات مما لا يترك مجالاً للمقارنة أو المضاهاة . ولكن ليس من الحكمة استخدام الذرية في الأغراض الهينة أو التافهة لإن الحصول على هذه الطاقة يقتضي إحتياطات ونفقات باهظة إذ يستلزم أولاً : الحصول على الوقودالذري بحالة نقية وهذه عملية دقيقة باظهة التكاليف .

ثانياً : بناء أفران ذرية .

ثالثاً : الحصول على أنابيب وأوعية تستطيع تحمل الحرارة العالية فلا تتأثر بها كثيراً ولا تنصهر وفي الوقت ذاته توصل الطاقة كاملة إلى الهواء الذي نريد تسخينه أو الماء الذي نريد تبخيره لنستخدمه في تدفئة المباني أو تكييف الهواء في المنشآت الكبرى أو في توليد الكهرباء . رابعاً : تشييد دروع وجُدُر وحواجز سميكة للوقاية من الإشعاع المميت الذي يصاحب انفجار الذرات وتوليد الطاقة وكل هذه الأمور ليست بالهينة ولا باليسيره لكنها تقتضينا جهوداً  وتكاليف وخبرات . غذن من المنطقي ألا نبالغ في استخدام الطاقة الذرية في الأغراض الهينة اليسيرة بل نقصرها على الأعمال الهامة الخطيرة مثل : تسيير البواخر الكبرى إقامة المحطات الضخمة لتوليد القوى والكهرياء وتسيير كاسحات ا لجليد التي تفتت ا لجبال الثلجية وتكشف لنا عن أسرار القطبين وغير ذلك مما يحتاج إلى طاقة هائلة لا يقوى عليها الفحم أو البترول إلا بكميات وافرة ونفقات طائلة وأزمان مديدة .

والحديث عن تسيير السيارات أو تدفئعة لمنازل أو المنشآت الصغيرة بالطاقة الذرية من قبيل الأماني إذا أنه يكلفنا نفقات كثيرة ويقتضي تشييد هياكل على نطاق يتسع لألواح من الخرسانة الثقيلة للوقياة من افشعاع الذري الذي يصاحب الوقود الذري المستعمل وتفجير الذرات الذي يجري في الأفران وخير من هذا أن نستخدم الطاقة الذرية في الأغراض الكشفية والأقمار الصناعية وحفر الانفاق بالجبال وتحويل مجاري التنهار وحفر القنوات وأشباهها التي تفيد منها البشرية . وقد حصل تطور في فكرتنا عن التركيب الذري فلم يكن مجرد التفكير في إمكان الحصول على ا لطاقة من الذرة ممكناً قبل كشف ظاهرة النشاط الشعاعي في أواخر القرن الماضي فقد فتح هذا الكشف باباً جديداً من أبواب البحث العلمي وكان من نتائج التفاعل المتابدل بين الحقائق التجريبية والآراء النظرية في هذا الميدان حدوث تطور كبير في فكرة العلماء عن تركيب الذرة ولعل من أهم نواحي هذا التطور .

أ-   أن الذرة التي كان يظن أنها غير قابلة للتجزئة قد ثبت أنها تتجزأ ، فبعض الذرات تنفجر من تلقاء نفيها كذرات الراديوم والبعض الآخر يمكن تفجيره بوسائل خاصة .

ب- أن الجسيمات والاشعاعات الصادرة عن الذرة المشعة أو  الذرة التي يمكن تحطيمها أمكن تصويرها ومسارها فوتوغرافياً . وبتوفر الفنيين على دراسة هذه الصور ألقى كثيرمن الضوء على التركيب الداخلي للذرة .

ج- أن ذرات العنصر الواحد وهي التي كان يظن أنها متماثلة من جميع الوجوه قد ثبت أن بينها اختلافاً في الكتلة دون أن يؤدي ذلك إلى أي اختلاف في خواصها الكيميائية وتقدم العالم أينشتين فأعلن في سنة 1905 مبدأ علمياً خطيراً يتلخص في أن الطاقة والمادة مظهران لشيء واحد وأن كلاً منهما يمكن أن يتحول إلى الآخر وأن العلاقة بينهما تتمثل في المعادلة ا لآتية :

الطاقة = الكتلة × مربع سرعة ا لضوء

ومعناها أنه إذا تحول جرام واحد من المادة تحولاً كاملاً إلى طاقة لنتج عن هذا التحول 9× 2010 إرجاً وهو نفس المقدار الذي يمكن الحصول عليه باحتراق حوالي 3000 طناً من الفحم .

أن عنصر الراديوم إذا أحيط بمجال كهربي أحد جانبيه سالب والآخر موجب فإن هذا يؤدي إلى تحلل الإشعاع إلى ثلاثة أجزاء ينحرف أولها إلى كهة الجانب السالب والثاني إلى الاتجاه الموجب والثالث يمضي في سبيله دون أي انحراف ولما لم تكن طبيعة هذه الأجزاء واضحة في بادئ الأمر فقد أطلق عليها أسماء ألفا ، بيتا ، جاما - على الترتيب . وقد تبين أن أشعة ألفا وأشعة بيتا ليستا أشعة بالمعنى العادي بل إن كلاً منهما عبارة عن جسيمات مادية تحمل الكهرباء . فجسيمات ألفا تحمل كهرباء موجبة وقد تبين فيها بعد أنها أنوية ذرات الهليوم . وجسيمات بيتا تحمل كهرباء سالبة وهي الالكترونات المعروفة . أما أشعة جاما فليست جسيمات وبالتالي فهي ليست مكهربة وإنما هي أشعة بالمعنى العادي وتشبه الأشعة السينية (×) إلى حد كبير .

ومن أولى المحاولات التي تجحت في إحداث مثل هذا التحول من مادة إلى أخرى ما فعله »رذر فورد« في سنة 1919 حين أطلق على ذرات النتروجين قذائف جسيمات ألفا »نواة ذو الهليوم« فقد دخل جسيم ألفا واستقر في تكوين نواة النتروجين وخرج منها بروتون فتحولت النواة من نواة النتروجين إلى نواة أكسجين كما تمكن (شادويك) بعد ذلك من تحويل البريليوم إلى كربون باستخدام جسيمات ألفا . إذن فتحول العناصر لا يحدث فقط بصورة طبيعية كما في الراديوم وإنما يمكن أن يحدث أيضاً بصورة صناعية كما في المثالين السابقين .

 

استخدامات الطاقة النووي ومستقبلها

 

إن ا لرغبة في الحصول على السلاح الأقوى يؤدي إلى احتمال إستخدام القدر من الأسلحة ا لنووية الذي يمحو مدناً بأكملها ويؤثر غبارها المشع على الخواص الوراثية لأجيال قادمة فخطر الدمار الكلي يدفعنا إلى ما يسمى بالعذاب الجماعي نتيجة الاعتقاد بقرب انتهاء العالم . فعلاوة على ماقام به السوفييت والامريكان في هذا السبيل وهو التطبيقات السلمية للطاقة الذرية والنووية فقد أعلن البريطانيون عام 1953 بأنهم مصممون على بذلك الجهود لتشجيع صناعة توليد الطاقة الكهربية الذرية . وإن عماد المحطات الذرية لتوليد الكهرباء هو مفاعل القدرة وقد يسمى مفاعل القوى الذرية وهو مفاعل له نفس الاجزءا الخمسة الرئيسية التي توجد في مفاعل الابحاث وهي قلب ومعدل وقضبان تحكم ومبرد ودرع وإن الوظيفة لهذه المفاعلات هي تحويل الطاقة الحرارية الناتجة من الانغلاق النووي إلى طاقة كهربية . وفي يوليو عام 1954 تم للأتحاد ا لسوفييتي تشغيل أو محطة ذرة للكهرباء بمنطقة »الأورال« وقدرتها 5000 كيلوات ولم تستبدل عناصر الوقود منذ بدء التشغيل حتى اليوم وهذا أمر لم يحدث مثله في العالم .

ويوجد أنواع عديدة من مفاعلات القدرة وإن اختلفت في مواد تركيبها ونوع وقودها وطريقة استهلاكه مثل :

1- مفاعلات الماء المضغوط أو الفوق مسخن .

2- مفاعلات ا لماء الذي يغلي .

3- مفاعلات سريعة التوالد .

4- مفاعلات الصوديوم المصهور كمبرد والجرافيت كمعدل .

5- مفاعلات المواد الكيماوية العضوية كمبرد ومعدل .

وفي أوائل السبعينات من هذا القرن برزت أزمة الطاقة في العالم لأول مرة فاتجه العالم الصناعي لإيجاد بدائل الطاقة المناسبة التي تزوده بالبطاقة المضمونة والرخيصة وكان من أبرز هذه البدائل الطاقة النووية والخوف ما يزال باقياً في ذاكرة الزمن ويصعب نسيانه أو تجاهله.

وإن استخدام الطاقة  النووية سيكون حاسماً في مجال توليد الطاقة الكهربية مع نهاية هذا القرن وفي ظل هذا التزايد السريع في نسب استخدام الطاقة النووية 10% كل خمس سنوات وقلة تأثير مخلفاتها وكذلك السعي لإيجاد مصادر بديلة للطاقة غير النفطية التي يرافقها عادة تقلبات في الأسعار . وما تسببه أيضاً من مخلفات ونفايات ذات تأثير سلبي على البيئة وأن عدداً كبيراً من الشركات ا لبترولية دخلت في المجال النووي ومن المتوقع توقف معدلات زيادة استهلاك النفط والغاز الطبيعي ولقد نجحت مجموعة الشركات النفطية منذ سنوات للقطاع النووي ففي عام 1970م قامت 17 مؤسسة بترولية في الولايات المتحدة بحوالي 55% من عمليات التنقيب عن اليورانيوم وسيطرت على 48% من احتياطاته العالمية المعروفة وتزايد إنشاء المحطات النووية حتى أصبح مع بداية السبعينات أكثر من 500 مفاعل عام في جميع انحاء العالم وبات واضحاً اليوم أن استخدامات الطاقة النووية دخلت معظم المجالات العملية والزراعية والطبية والصناعية ففي مجال الصناعة أضحت كثير من معظم المواد وفحص تقاس بمقاييس خاصعة لأجهزة نووية مثل كميات الحديد في السيارت ومحركات الطائرة أما في المجال الكهربي وهو الأهم فتشير آخر الإحصاءات إلىأن ما نسبته 25% من كهرباء العالم مصدره الآن محطات نووية ويقدر البعض هذه ا لمحطات ما بين 420 إلى 510 م محطات في أكثر من توليد 40 توليد بالرغم من قلة وتدني مستوى الطاقة النووية ذات  التأثير المباشر على التوازن البيئي إلا أن مخاطرها مازاتل كبيرة خاصة بعد حاصة تشرنوبل المروعة عام 1986م والتي دفعت أنصار البيئة للتصدي للمشروعات النووية وعرقلتها والحقيقة أن تأثير مخلفات المفاعلات النووية قد يكون أقل خطراً على البيئة لكن النفايات المشعة تعد مشكلة كبيرة ولا تكمن المشكلة في حجم النفايات أو آثاره الحالية بل في اشعاع تلك الفضلات وآثارها المستقبلية وكانت جماعة أنصار البيئة تنبهت لهذه المسألة ذات العلاقة باستخدام المفاعلات النووية في مجال توفير الطاقة واشتدت ضغوط هذه الجماعات للتخلص من هذه البرامج . إلا أن العديد من ا لدول الصناعية أخذت على عاتقها تطوير تلك الصناعة بشكل سريع لتأمين الطاقة من الإنفلات ولتطمين تلك الجماعات على دقة وأمن المفاعلات  النووية وفي بريطانيا تقرر أن تقوم الحكومة وشركاتها بإنتاج الكهرباء النووية . ويشترك الفرنسيون والايطاليون في مشروع ضخم للقرن القادم يهدف إلى تطوير مفاعل »لانسال السريع « الذي يسمح بتوفير طاقة نووية تعادل 50 مرة طاقة مفاعلات الماء التقلدية وتقدر تكلفة هذا المشروع بـ 4.8 مليار دولار . ومن المؤكد أن صراعاً حارً سينشب بين جماعات ومنظمات حماية البيئة ورجال الصناعة حول بناء المفاعلات النووية الجديدة في دول العالم المختلفة .

وقد أصبحت الطاقة النووية إحدى الركائز الأساسية التي تعتمد عليها العديد من الدول المتقدمة والنامية في المجالات المختلفة ويدعم صحة هذه المقولة ما يحدث من تناقص سريع في مصادر الطاقة التقليدية حيث تشير الوكالة الدولية للطاقة الذرية إلى أن المخزون العالمي من البترول يكاد يكفي لاستهلاك حوالي 30 عاماً ومن الغاز الطبيعي حوال ي45 عاماً ومن الفحم حوالي 200 عام وذلك حسب المعدلات الحالية للإستهلاك دون النظر إلى معدلات الزيادة والنمو البشري ومما يرفع من أسهم الطاقة النووية ما تراكم حتى الآن من آثار سلبية للإستخدام المتزايد للوقود الأحفوري الفحم والبترول والغاز  وفي مؤتمر الكهرباء والبيئة الذي عقد في مايو سنة 1991م بالعاصمة الفنلندية »هلسنكي« اتضح أن استخدام الطاقة النووية فنتاج الكهرباء يخضع لعدة إعتبارت هي :

1- الاعتبار الاقتصادي ويعني مدى تحمل اقتصاد الدولة المعنية لأعباء مثل هذا النوع من الإنشاءات الباهظة التكاليف وكذلك مدى جدواها .

2- حجم الاستثمار المطلوب ويعني القدرة المطلوبة من المحطة  النووية المزمع إنشاؤها

3- مخاطرة الفقد وتعني مدة القدرة على تحمل الخسارة الفادحة إذا حدث وتعرضت المنشأة النووية للدمار لسبب ما .

4- معدل التنمية حيث يكون قليلاً في الدول النامية وبالتالي لا تحتاج إلى محطات ذات قدرة فائقة وقد لفت هذا الوضع انتباه الدول النامية أن ما يستجد في الدول المتقدمة لا يتناسب معها .

5- الأمان النووي وهو عنصر حاسم في اتخاذ قرار بناء مفاعل نووي حيث لابد من اتخاذ جميع الإجراءات والسبل لحماية البيئة والإنسان من الاخطار النووية . وقد أثرت هذه الاعتبارات في تصميم المفاعل الجديدة ويتخلص ذلك في النقاط التالية:-

1- تقليل الكفة حتى تصبح المحطة النووية متاحة للعديد من الدول .

2- تقليل زمن الإنشاء والتركيب .

3- عمل أنواع قياسية من ا لمحطات النووية حتى تكون جاهزة للتسليم حين طلبها .

4- عمل أنواع صغيرة تتلاءم مع  الدول النامية .

5- جعل المحطة أقل تعقيداً وأقل اعتمداً على أجهزة الحاسوب .

ويمكن تصنيف المواد النووية اللازمة للصناعة النووية إلى ثلاثة أقاسم :

1- مواد الوقود النووي : وتشمل خامات اليورانيوم والثوريوم بالإضافة إلى البلوتونيوم المتولد من المفاعلات ا لنووية .

2- مواد افنشاءات النووية : وتتمثل في خامات الزركونيوم والنيوبيوم والفاناديوم والبريليوم .

3- المواد  المستخدمة كمبردات ومهدئات وقضبان تحكم في المفاعلات ا لنووية وتشمل خامات الهافنيوم والبورون والبريليوم والتنتالوم والجادولينيومو الكادميوم .. الخ وقد بدأت هيئة المواد النووي في مصر عمليات التنقيب عن الخامات ا لذرية في نوفمبر سنو 1956 م إمتدت حتى وقتنا هذا.

ويمكن تقسيم مصادر اليورانيوم الذي يمثل الوقود النووي الرئيسي إلى :

أ - مصادر تقليدية وهي الخامات التي يتم تعدينها وتصنيعها لإستخلاص عنصر اليورانيوم.

ب- مصادر غير تقليدية وهي الخامات التي يتم تعدينها وتصنيعها لأغراض أخرى ويمكن انتاج  اليورانيوم منها كناتج ثانوي مثل الرمال السوداء ورواسب افوسفات . ولابد أن يمر تعدين وتصنيع أحد وراسب اليورانيوم لابد أن يمر خلال ستة مراحل رئيسية :

1- مرحلة التخطيط وتشمل دراسة الأقمار الصناعية ودراسة المعلومات

2- مرحلة الكشف والتنقيب وتشمل معالجة معطيات الكشف الجوي الاقليمي والقايم بعمليات المسح الجوي الاقليمي .

3- مرحلة  متابعة دراسة الشاذات الإشعاعية وتتضمن القيام بعمليات المسح الجوي التفصيلي والمسح الجيولوجي والإشعاعي .

4- مرحلة التقييم الأولى للإكتشاف وهي المرحلة التي تشتمل على عمليات المسح الجيولوجي والإشعاعي الطيفي والمسح الجيوكيمائي .

5- مرحلة تنمية الاكتشاف وهي المرحلة التي تشتمل على عمليات الجيولوجيا التفصيليةوالبترولوجية والهيدرولوجية .

6- مرحلة الانتاج وفيها يتم الحفر المكثف وتجميع العينات بشكل منظم وتحليلها بالإضافة إلى دراسة الاستخلاص الكيمائي ودراسة هندسة ا لمعادن والتقييم الاقتصادي . وقد كشف النقاب علن وجود 4 مواقع لإنتاج اليورانيوم بمصر لتغطي احتياجات برنامجها النووي للأغراض السلمية .

 

وللمفاعلات النووية استخدامات وتطبيقات كثيرة أهمها :

 

 توليد الطاقة :

 

يتزايد إستهلاك العالم للطاقة الكهربائية بمعدل 6.7% سنوياً مما يعني أن الاستهلاك العالمي للكهرباء يتضاعف مرة كل 10 سنوات والمفاعلات النووية من أهم البدائل لتوليد الطاقة الكهربائية بعد محطات الكهرباء الحرارية العاملة بالوقود التقليدي كالبترول والفحم .